Improving the Surface Water Quality of Coastal Basins with Resilient Land Cover Scenarios

Martha Ryan

Dr. Eric Bardenhagen – University of Delaware

Dr. Jules Bruck – University of Florida

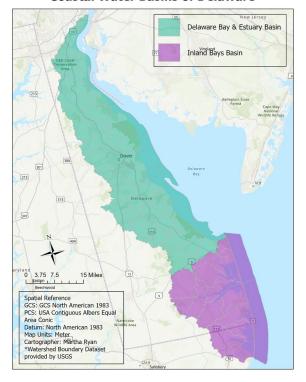
Threats to Delaware's Coastal Water Quality

Prime Hook National Wildlife Refuge, DE

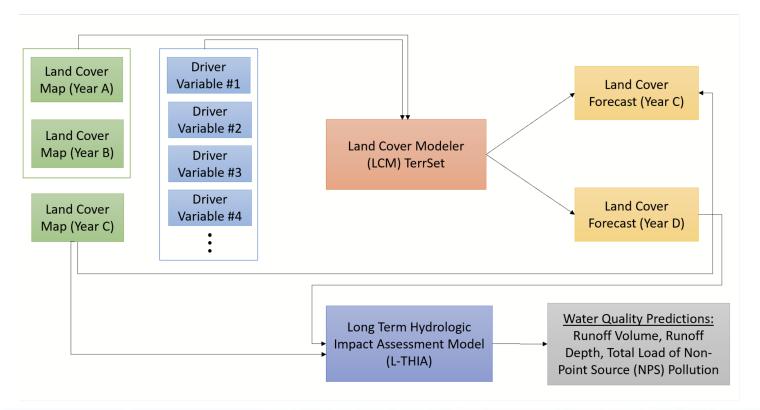
- Two Major Water Basins
 - Delaware Bay & Estuary
 - Inlands Bay
- Historical Threats
 - Industrial, Agricultural, & Urban Development
 - Increased Run-Off
 - Non-Point Source Pollution
 - Wetland Conversion
- Future Wetland Degradation
 - Coastal Squeeze
 - Sea Level Rise
 - Urban & Agricultural Expansion

Intervention Modeling

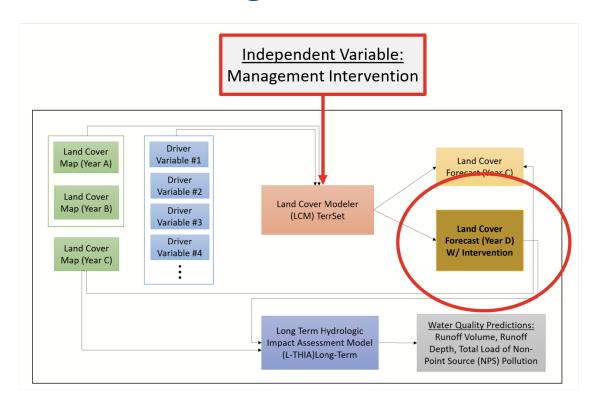
Disincentive map of a forest reserve. Eastman, J. R. (2015). TerrSet manual. Accessed in TerrSet version, 18(1).


- Land Use/Land Cover Prediction
 - Previous LULC Maps
 - Driver Variables
- Ecosystem Service (ES) Impacts
 - Surface water quality
- Sustainable Interventions
 - Altered LULC → ES Changes
 - Policy Interventions

Project Overview

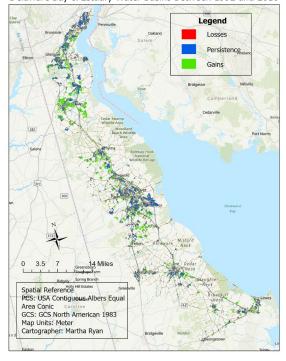

Coastal Water Basins of Delaware

- RQ: "What management interventions should be used to improve the surface water quality of the Delaware and Inland Bay water basins?"
- Specific Aims
 - Identify drivers of future land cover change
 - Estimate predicted land cover changes
 - Quantify change impacts on surface water quality
 - Test the impact of physical & policy interventions



Part 1: Model Development & Calibration

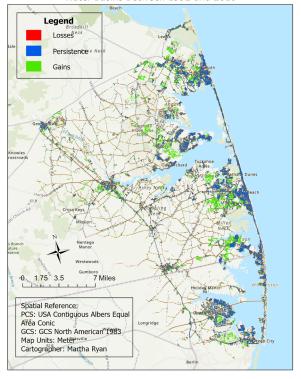
Part 2: Management Intervention



Results: Historic Land Cover Trends

- Delaware Bay & Estuary
 Water Basin
 - Grasslands & Agriculture →
 Low-Intensity & Open
 Development
 - Estuarine Emergent Wetland →
 Estuarine Scrub/Shrub Wetland
 - Estuarine Forest Wetland →
 Agriculture & Palustrine
 Emergent Wetland

Changes in Low-Intensity and Open Development in the Delaware Bay & Estuary Water Basins Between 1992 and 2016

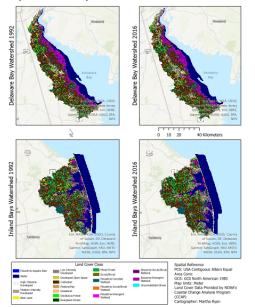


Results: Historic Land Cover Trends

Inlands Bay

- Agriculture, Palustrine Forested
 Wetland, & Deciduous Forest →
 Medium & Low-Intensity
 Development
- Scrub/Shrub, Grasslands, &
 Palustrine Forested Wetland →
 Evergreen Forest
- Estuarine Forested Wetland →
 Estuarine Emergent Wetland

Changes in Medium and Low-Intensity in the Inlands Bay Water Basins Between 1992 and 2016



Next Steps

Figure 4: Historical Land Cover Maps of the Delaware Bay and Inland Bays Watershed from 1992 and 2016

- Historical Water Quality Assessment
 - Test Water Quality Model
 - Compare Future Results
- Land Cover Prediction
 - Two Periods
 - $2001-2011 \rightarrow 2016$
 - $2011-2019 \rightarrow 2021 \& 2035$
 - Land Cover & Driver Maps
 - NLCD
 - DEM, Slope, Transportation Lines,
 Demographics, Climate, & Sea Level Rise

Acknowledgements

US Army Corps of Engineers

- Dr. Jules Bruck **UF**
- Dr. Eric Bardenhagen

 Dr. Afsheen Sadaf & Mojtaba Tahmasebi **UF**

